
Programming with Python:
Functions

- Programming -

Mechanical and Electrical Engineering

Carlos III University of Madrid

- 2

Introduction (I)

⬥ So far, we’ve been dealing with the implementation of programs
in an isolated way
■ Program to determine whether a given a number is prime, program to

determine a position of the Fibonacci sequence, etc.

⬥ What could we do if we wanted to reuse some code that we’ve
implemented, among different programs or in different parts of a
same program, without having to copy & paste the code?
■ E.g. we might want to reuse code that generates a random integer

number in a given range

⬥ We use functions to achieve that.

- 3

Introduction (II)

⬥ The general purpose of a function is to provide an output based on
some input

⬥ Functions...
■ provide a general mechanism that enables us to reuse code
■ allow us to clearly separate tasks within a program
■ improves readability
■ split a complex task in small activities

■ allow us to transfer control back and forth between different pieces of code
● Functions are called from other pieces of code; it’s as if the function code was added to

the “caller” code

⬥ We’ve already been using functions during the course
■ E.g. len, zip, print…

- 4

Function Declaration

⬥ A function declaration contains the code that defines the
behaviour enacted when the function is called

■ A method encapsulates recurring behaviour

⬥ A method declaration consists of signature and body

⬥ Example:
def function(input_variables) :

code here
return output_variable

- 5

Functions

Some examples of functions are:
⬥ Calculates the perimeter of a circle

⬥ Changes the vowels of a String for ‘x’

⬥ Indicates whether a String is a palindrome

⬥ Prints to screen a String in capital letters

⬥ Indicates the highest double number from a set of 5

⬥ Indicates the highest double number in an array

⬥ Returns the nth value of the Fibonacci sequence

⬥ Indicates whether a matrix is diagonal

⬥ Returns the transpose of a matrix

- 6

Variable Scope (I)

⬥ The variables in a Python program have a specific scope in
which they can be accessed

⬥ As a rule of thumb, and for this course, variables should be
accessible in the code block corresponding to the most
immediate open execution block

⬥ This means that e.g.:
■ Variables are not accessible between functions

■ When you declare a variable within the block of instructions of a loop
(including for initialization), the variable isn’t (shouldn’t be)
accessible outside the loop

- 7

Variable Scope (II)

⬥ The variables declared in a method are referred to as local
variables

⬥Method arguments can be used as local variables

⬥ Trying to access a variable outside its scope will result in a
compilation error

⬥ The variables within a same scope must have different
names
■ E.g. an argument of a method cannot have the same name as a

local variable of the method

- 8

Example

⬥ Lets study the scope and name resolution using an example:

def my_function():

test = 1 # this is defined in the local scope of the function

print("my_function:", test)

test = 0 # this is defined in the global scope

my_function()

print("global:", test)

The name test is defined in two different places. Actually, two scopes.

⬥ If you execute the code, you'll see this:
my_function: 1

global: 0

- 9

Input: Argument passing

⬥There are three key points to keep in mind:

■ Argument passing is nothing more than assigning an

object to a local variable name

■ Assigning an object to an argument name inside a

function doesn't affect the caller

■ Changing a mutable object argument in a function

affects the caller

- 10

Input: Argument passing (Example)

key.points.argument.passing.py

x = 3

def func(y):

print(y)

func(x) # prints: 3

- 11

Return values

⬥ Return values of functions are one of those things where Python
is light years ahead of most other languages.

⬥ Functions are usually allowed to return one object (one value)
but, in Python, you can return a tuple, and this implies that you
can return whatever you want.

- 12

Return values

⬥ Example:

def toHMS(s):

hours = s // 3600

minutes = (s % 3600) // 60

seconds = (s % 3600) % 60

return (hours, minutes, seconds)

x = int(input("Enter a number of seconds:"))

(h, m, s) = toHMS(x)

print(x,"seconds are:", h, “hours, ", m, "minutes, ", s, "seconds")

- 13

None value

⬥A function always returns something in Python, even if you don't
explicitly use the return clause.

⬥ If the function has no return statement in the body, its return value is
None.

⬥ None defines a null value - or the absence of value. None is not the
same as 0, 0.0, False or an empty String ("")

⬥ None is a data type of its own.
def printHello():

print("Hello world")

x = printHello()

print(x)

- 14

Recursive functions

⬥When a function calls itself to produce a result, it is

said to be recursive. Sometimes recursive functions

are very useful in that they make it easier to write

code.

⬥Example:
def factorial(n):

if n in (0, 1): # base case

return 1

return factorial(n - 1) * n # recursive case

- 15

Documenting the code

⬥ Using triple double-quoted strings allows you to expand
easily later on.

⬥ Use sentences that end in a period, and don't leave blank
lines before or after.

⬥ Multi-line comments are structured in a similar way.

⬥ Example:
def square(n):

"""Return the square of a number n. """

return n ** 2

def get_username(userid):

"""Return the username of a user given their id. """

return db.get(user_id=userid).username

- 16

Conclusion

⬥ A function is a piece of code that generates an output from
some input
■ It is a reusable task within a program

⬥ A method has a signature and body

⬥ The scope of a variable corresponds to a code block
■ Generally, it starts from the place where it is declared to the

closing bracket of its code block

⬥ In general, whenever you can clearly separate tasks within
programs, you should do so

⬥ Document your code!

